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Cracking orientation and induced anisotropy of 
a ceramic matrix composite under off-axis 
loading 
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The effect of matrix microcracking on the stiffnesses of a carbon-fibre/SiC-matrix woven 
composite is studied by means of an ultrasonic method. It provides the whole set of the 
stiffness tensor coefficients which are inaccessible by classical strain measurements and 
which are required to identify anisotropic damage. The induced anisotropy depends on the 
loading direction. If a tensile solicitation in a fibre direction leads to stiffnesses decreases 
without any rotation of principal axes, a tensile solicitation of 45 ~ from a fibre direction 
creates microcracks with a predominant orientation that does not coincide with the elastic 
symmetry axes, and induce a fully anisotropic elastic degradation. 

1. Introduction 
Matrix cracking is the fundamental mechanism of de- 
formation in ceramic matrix composites [1-4]. The 
most remarkable effects of the growth of the micro- 
cracks are the non-linearity in the stress-strain relation- 
ship, and the degradation of elastic stiffnesses. Most 
studies of damage in these materials have been con- 
cerned with the failure and toughness aspects, to under- 
stand the damage process and to obtain the condition 
(failure criteria) for crack propagation [1-7]. Another 
group of investigations relies on the prediction of the 
stiffness reduction in a body containing cracks [8-15]. 

This point of view, which may be termed micro- 
mechanics, implied that the nature of damage is identi- 
fied and described geometrically. It is also true for the 
ideal representation of cracks used in the various trunc- 
ations existing in the literature [16-21] of the general 
description of damage [22]. If the damage is defined as 
the change of the elasticity tensor [22], no preliminary 
knowledge of the microstructure is required. The inter- 
est in this description of damage lies in its generality 
and in its purely phenomenological character. The 
price to pay for its simplicity is that the variations of the 
whole stiffness tensor must be studied. If classical 
measurement methods lead to a partial identification of 
these tensor variations, an ultrasonic device connected 
to a tensile machine makes it possible to perform the 
measurements of the nine stiffness coefficients, describ- 
ing completely the elasticity of an orthotropic material 
during a tensile test [23, 24]. Since the general defini- 
tion of the damage agrees with analytical results of the 
micromechanical approaches, comparison of experi- 
mental measures of damage carried out without a priori 

crack geometry with theoretical predictions of the cha- 
nges in elasticity coefficients deduced from an ideal 
representation, allows identification of the approximate 
orientation of the microcracking. 

This paper treats the damage induced anisotropy 
that is orientation of matrix cracks as a function of the 
loading direction and to the natural axes of the com- 
posite. In composite materials, the microeracks have 
a preferential orientation. Their effect is highly aniso- 
tropic. Anisotropy arises because failure mechanisms 
favour the generation of microcraeks oriented normal 
to the tensile stress. Only a damage field that is paral- 
lel to one of the three orthogonal axes of material 
symmetry preserves the orthotropic symmetry in the 
elastic coefficients. This is the case when the composite 
is submitted to a tensile stress in one of the fibre 
directions. The damage process is then a matrix crack- 
ing which propagates perpendicular to the fibres that 
are aligned with the tensile loading direction. The 
directions of cracks' growth are in respect with the 
bi-directional texture of the composite; the material 
keeps its orthorhombic symmetry during the degrada- 
tion process. In contrast, an off-axis solicitation cre- 
ates microcracks with a predominant orientation that 
may depend on the loading direction or on the fibre 
directions. If the cracks' orientation does not coincide 
with the fibre axes, it induces a fully anisotropic elastic 
degradation. The measurement of the change of all the 
stiffness tensor components during a damaged process 
is done for a 2D carbon-SiC composite material sub- 
mitted first to a tensile test in one of the fibre direc- 
tions and second to a tensile solicitation 45 ~ from the 
fibre directions. 

2. Material and experimental 
procedure 

2.1. Material 
The material studied is a bi-directional carbon-SiC 
composite prepared by S.E.P (Soci6t6 Europ6enne de 
Propulsion, France). It is fabricated from a 2D fibrous 
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2.2. Ultrasonic evaluation of the stiffness 
t enso r  

I C y ]  = 

(1, 3). The two remaining coefficients C23 and C44 are 
identified using the previously identified coefficients 
by propagation in the non-principal plane of sym- 
metry (1, 45 ~ of orthorhombic materials [29]. Axis 
45 ~ is defined as the bisecting line of the axes 2 and 
3 (see Fig. 1). For  tetragonal material, this plane is 
a plane of symmetry and those two stiffnesses can not 
be measured independently [30]. The value of C44 is 
measured with contact transducers. The value of 
C23 is recovered in the plane (1, 45~ 

Wave speed measurements are performed by using 
ultrasonic pulses which are refracted through a plate 
sample immersed in water [31]. Because of the signal 
distortion due to the propagation in a porous medium 
[32], a special signal processing method was de- 
veloped [33]. It leads to the correct measurement of 
the phase velocity of the pulses through the porous 
sample. An estimation of the confidence interval asso- 
ciated with each identified constant is calculated [34] 
by means of a statistical analysis of the set of the 
velocity measurements in each plane of propagation. 

The stiffnesses of the sample SO before load, in the 
coordinate axes placed on the cloths' axes, Fig. 1, and 
their 90% confidence interval are: 

Sym. 
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The main principles and the methods of ultrasonic 
non-destructive evaluation (NDE) have been given by 
Roux [26] for the recovery of the elastic constants of 
anisotropic materials. Ultrasonic evaluation makes it 
possible to measure the nine stiffness coefficients de- 
scribing completely the elasticity of an orthorhombic 
material. 

The ultrasonic characterization purpose is to solve 
the inverse problem of Equation [27]: 

det(F u - 9vZ~u) = 0, with 

Fq = Cqklnknl, i, j = 1, 2, 3, (1) 

where p is the density, n is the direction of propaga- 
tion, v is the velocity, Cuk ~ are the elasticity coefficients 
and 5 v is Kronecker's delta function. Stiffnesses are 
recovered as the coefficients of Equation 1 from suit- 
able sets of experimental values of its roots 9v z in 
various directions n [283. This recovery of the stiffness 
coefficients from the experimental velocities is solved 
by an optimization inversion method. It minimizes, in 
the least square sense, the shift between the experi- 
mental values, and the one calculated from Equation 
1 for the optimum values of the stiffnesses. For  a thin 
plate sample, the measurements made in the two ac- 
cessible principal planes lead to the identification of 
seven coefficients of the stiffness tensor, namely: C11, 
C22 , C12 , C66 for a propagation in the plane (1, 2) 
(in axes of Fig. 1), and Cl l ,  Cas, C13, C55 in the plane 

preform built up from multiple layers of carbon cloths. 
The SiC matrix was added by a chemical vapour 
infiltration (CVI) process. Before infiltration of the 
matrix, the carbon fibres were coated with a pyro- 
carbon interphase of mean thickness of about 1 gm to 
enhance the desired non-catastrophic tensile behav- 
iour [25]. These processing steps resulted in a material 
having a density close to 2 g cm-  a, a fibre content of 
approximately 40 vol % and a residual porosity in- 
herent to the CVI process in the range 10-15%. 

Because of its bi-directional structure, the material 
possesses three perpendicular planes of symmetry and 
it satisfies the hypothesis of an orthorhombic sym- 
metry required by the ultrasonic technique. 

Two samples referred to as SO and $45, in the form 
of plates measuring 190 m m x  50 mm x 3 ram, are 
used in this study. Sample SO is cut out according to 
the cloths' axes and $45 according to a 45 ~ angle from 
fibre axes. Samples SO and $45 have been extracted 
from two different plates of material. 

Figure 1 Under load ultrasonic device. Sample is scanned in three 
planes; the principal plane (1, 3) defined by the normal to the plate 
and the fibre direction, the principal plane (1, 2) and the non- 
principal plane (1, 45% axis 45 ~ being defined as the bisecting line of 
the axes 2 and 3. 
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The carbon cloths are balanced weaves. So, the 
directions 2 and 3 are symmetrically equivalen~t. Cer- 
tain stiffnesses are equal: C22 ~ C33, C66 ~ C55, 
C12 ~ C13. The carbon-SiC 2D composite presents 
a tetragonal symmetry with six independent stiff- 
nesses. 

3. Stiffness tensor changes under 
tensile loading in one of the fibre 
directions 

An immersion ultrasonic tank associated with a ten- 
sile machine composes the under load characteriza- 
tion device [23, 24]. It makes it possible to perform, 
under load, the angular investigation in the three 
planes required to identify the elasticity tensor [29]. 

3.1. Stiffness tensor changes 
Sample SO has been submitted to a tensile test in 
direction 3 which is parallel to one of the fibres' 
directions. The loading was applied in 20 steps of 
stress, necessary for the ultrasonic evaluation, until the 
sample failed at 360 MPa. Fig. 2 plots the change of 
the nine independent stiffnesses and their confidence 
interval identified from the phase velocities as a func- 
tion of tensile stress. 

The 2D carbon-SiC composite does not exhibit an 
elastic behaviour. The stiffness coefficients decrease 

from the outset of the loading. We note an important 
loss of stiffness along the tensile axis (axis 3), from 123 
to 75 GPa. On the other hand, C22 is essentially 
constant. The cracks grow preferentially in the plane 
transverse to the loading direction [14]. It is worth 
noting that the microcracking also affects the shear 
moduli, and particularly those relative to the planes 
that contain the loading direction, i.e. C44 and C55. 
The 40% decrease of the in-plane shear modulus 
C44 is quite similar to the decrease of C33. The 
microcracking does not affect perceptibly the elastic- 
ity coefficients C22, C12 and C66 of plane (1, 2) 
normal to the fibres. Only the stiffnesses C33, C~3, 
C23, C44 and C55 of planes including the loading axis 
are modified. 

The damage induced anisotropy involves a change 
in the symmetry of the composite. The predominant 
orientation of the microcracks destroys the balance of 
the carbon cloths. The directions 2 and 3 are no longer 
symmetrically equivalent under load. The elastic 
symmetry, which was initially tetragonal, becomes 
increasingly orthorhombic: C22 ~ C33 , C66 ~ C55 , 
C12 -/= C13. 

3.2. Tridimensional description of non 
linear behaviour 

The microcracking affects the physical and mechan- 
ical properties. Degradation of one of those properties 
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Figure 2 Variation of the stiffness tensor coefficients and their 90% relative confidence interval with the tensile stress in one of the fibre 
directions, direction 3, sample S0. 
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is an indirect measurement of damage. Changes in the 
values of the elastic stiffnesses can be taken as a char- 
acterization of the state of damage of the material 
[35]. The elasticity tensor can be written in an addi- 
tive form [36]: 

C = Co - Cc (2) 

in terms of the stiffness tensor Co of the uncracked 
material and of the loss of stiffness Cc due to the 
microcracks. The variation of the stiffness tensor: 

o~ = Co = C o -  C (3) 

is selected as an internal variable representing the 
current state of the microcracking of the material. 
Like the initial elasticity tensor Co, the effective stiff- 
ness is a fourth rank symmetrical tensor, and the 
damage variable co shows the same properties. With 
the introduction of usual abbreviated subscript nota- 
tion, Equation 3 becomes: 

O~is = C~ - Cis I , J = l t o 6  (4) 

The components of this tensor have a clearly identifi- 
able physical meaning, and they form a finite set of 
data and a fully anisotropic behaviour can be de- 
scribed. 

Traditionally, in phenomenological models based 
on the thermodynamics of continuous media, the 

damage parameter  varies from zero for the initial state 
to the critical value d = 1 at the failure of the volume 
element [37]. To this end it is necessary to normalize 
the components  of the damage tensor to their thermo- 
dynamically admissible maximum values e0~ T M  such 
that the elasticity tensor remains a definite positive 
operator, i.e. the volume free energy of the damaged 
material is still positive [22]. The components  of the 
normalized damage tensor are then given by: 

0,)11 Cli 
Du = ~ = 1 -- C~ I = 1  to 6, no sum (5) 

Drj 
0) H 

h 

cos - CH 
- C~ + sign(C~ - C,j) [C~ - DI, ) C~ - Djj)] t/2 

I , J =  l ,  . . . , 6 ,  I r J (6) 

3.3. A n i s o t r o p i c  d a m a g e  t e n s o r  e v o l u t i o n  
The variations of the stiffnesses CH at each level of 
stress give the evolution of the damage tensor compo- 
nents D u  using Relations 5 and 6. These variations, 
Fig. 3, differ from one component  to another and 
show clearly the anisotropy of the damage phenom- 
enon. At failure, damage value is consequential, that 
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Figure 3 Evolution of damage tensor coefficients with the tensile stress in one of the fibre directions, direction 3, sample SO. 
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indicates the stiffness decrease associated to a distrib- 
uted and generalized damage; the matrix multi-crack- 
ing. Extent of the damage is due to the substantial part 
of the matrix-to-composite total stiffness. 

The damage parameter D33 associated with the 
stiffness in the tensile axis 3 exhibits an important 
linear increase. The level reached by the damage para- 
meter connected with the inplane shear moduli 
(D44 ~ 0.45) is quite similar to the one reached by D33. 
The non-zero components of the damage tensor are 
D~3,/)44 and Ds~ relative to the planes that contain 
the loading direction. The other parameters relative to 
the plane normal to the tensile axis, D ~ ~, D2z and D66, 
do not vary significantly. This result is consistent with 
the analytical predictions of the effective elasticity 
tensor of an anisotropic solid containing penny- 
shaped cracks normal to the loading axis [15]. 

4. Stiffness tensor changes under 45 ~ 
off-axis tensile loading 

4.1. Rotation of coordinate axes 
The effect of an off-axis solicitation is studied using 
sample $45, cut out at a 45 ~ angle from the fibre axes, 
and loaded in this direction. Let R' (1', 2', 3') be the 
coordinate system associated with the sample $45 and 
R (1, 2, 3) the coordinate axes associated with the 
fibres, Fig. 4. Rotation of the coordinate system 
through a 45 ~ angle about the 1 ~ = 1' axis allows us to 
transform from one coordinate system to the other. 
The stiffnesses in the R' (1', 2', 3') coordinate system 
are Ci'j while Cij are the stiffnesses in the R (1, 2,3) 
coordinate system. Ci} and Ci) are actually the compo- 
nents of the same tensor C in two different bases 
connected by a coordinate transformation matrix. 

The carbon-SiC 2D composite presents initially in 
the R coordinate system a tetragonal symmetry with 

Figure 4 R'( I ' ,  2', 3') coordinate system associated to the sample 
$45, R(1, 2, 3) the coordinate axes associated with the fibres. 

six independent stiffnesses. The R' coordinate axes are 
like elasticity principal axes. The orthotropic class of 
symmetry is retained in the R' (1', 2', 3') coordinate 
system and the stiffness matrix is: 

Fc'] 

C12 

el3 

0 

0 

0 

C~z Ci3 0 0 0 

C;2 C~3 0 0 0 

C23 C;3 0 0 0 

0 0 C h  0 0 

0 0 0 C;5 0 

0 0 0 0 C;6 

For  the sample $45 studied, the stiffnesses before load- 
ing measured in the R' (1', 2', 3') coordinate system are 
shown in Table I. In respect of the measurement 
accuracy, the directions 2' and 3' are symmetrically 

t t / t t equivalent: C;2 ~ Cs3, C66 ~ C 5 5 ,  C12 ~ C13 .  T h e  

tetragonal symmetry remains in the R'(1 ' ,2 ' ,3 ')  
coordinate axes. 

On using the coordinate transformation matrix M, 
the stiffness matrix in the R(1, 2, 3) coordinate system 
associated with the fibre directions becomes [27]: 

[ c ]  = [M] [C']  [M]  t 

Cll C1= C13 C14 0 0 

C12 C22 C23 C24 0 0 

C13 C23 C33 C34 0 0 

C14 C24 C34 C44 0 0 

0 0 0 0 Css C56 

0 0 0 0 C56 C66 (7) 

where [M]  t designates the transpose of the matrix M: 

[M] 

1 

0 

0 

0 

0 

0 

0 0 0 0 0 

a 2 b 2 c 0 0 

b 2 a 2 - c 0 0 

- c / 2  - c / 2  d 0 0 

0 0 0 a - b  

0 0 0 b a 

(8) 

and a =cosO = 21/2/2, b =s inO = 21/2/2, c -- sin20 
= 1, d = cos 20 = O. The transformed elastic stiff- 

nesses C~j by clockwise rotation of coordinates 
through an angle 45 ~ about the 1 axis are: 

Cll = C;1 

/ 
i , t t C22 = C3a = ~(C33 + Ca2) + C ~  + C2~ 

2 

C12 C13 1 , , = = =(C12 + C13) 

C~.3 
c23 = �88 + c ;3 )  + ~ -  - c4.4 
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TAB LE I Initial stiffness coefficients (in GPa) and associated 90% confidence interval of the S45 sample measured in R'(I', 2', Y), calculated 
in R(1, 2, 3) by using the rotation transformation matrix and directly measured in (1, 2) plane of the system R that coincides with the (1, 45 ~ of 
the system R' 

C[.i measured in R'(I ' ,  2', 3') C u calculated in R (1, 2, 3) C u measured in plane (1, 2) 

C~1= 17+_1 C l 1 = i 7 _ + 1  
C'2z = 71 -[- 4 C 2 2  = C33 = 99 + 8 
C;3 = 65 + 3 C 6 6  = Css = 11 + 0.2 
C;6 = 11.0 + 0.1 C44 = 19 _+ 5 
C;5 = 10.8 + 0.3 Ca2 = C13 = 2.4 + 0.4 
C~4= 50___2 C23= - - 1 _ + 8  
Ci2 = 2.5 + 0.4 Ct4 = 0.1 _+ 0.4 ~ 0 
C~3= 2.3_+0.4 C 2 4 = C 3 4 =  - - 1 . 5 + 2 ~ 0  
C~3= 30__7 Csr= - 0 . 1 _ _ _ 0 . 2 ~ 0  

Ctl = 17 + 1 
Cz2 = 85 + 8 
C66 = 10.5 + 0.3 

Cl2= 2.3_+1.0 

Ci~ 
C44 = �88 + C;3) 2 

1 ! t 
C66 = C55 = ~(C66  -I- C55 ) 

i t -- t 
C14 = ~ ( C t 2  C13) 

~ (C33  - -  C22 ) C24 = C34 = 1 t / 

- ~ ( c s s  c , , )  (9) C56 _ 1 t _ t 

The initial stiffnesses C u calculated from Equation 9 
in the R(1, 2, 3) coordinate system by using the coordi- 
nate transformation matrix, are shown in Table I. 
Since the tetragonal symmetry remains in the 
R'(I', 2', 3') coordinate axes, the tensile-shear coupling 
coefficients C14, C24, C34 and C56 are equal to zero 
with regard to the measurement accuracy. A way to 
validate the calculated stiffnesses C u is to compare 
them with those measured in the plane (1, 45~ Table 
I. This plane is a principal plane, since this sample 
exhibits a tetragonal symmetry. It coincides with the 
plane (1, 2) of the R(1, 2, 3) coordinate axes. 

The two samples, SO and S45, have been cut out 
from different plates. The dispersion of the stiffness 
values measured is as important for samples cut of the 
same plate, as it is when taken out from different plates 
[-24]. This variation is caused by the high sensitivity of 
the material properties to the porosity level and to the 
nonhomogeneous distribution of the porosity which is 
due to the manufacturing process [24]. 

4.2. S t i f fne s s  t e n s o r  c h a n g e s  in t he  45 ~ a x e s  
Sample $45 has been submitted to an off-axis tensile 
test in the direction 3', until the sample failed at 
170 MPa. Fig. 5 represents the variation of the elastic 
constants versus the ~; applied stress measured with 
the hypothesis required by the ultrasonic technique 
that the material keeps its orthorhombic symmetry in 
the R'(I', 2', 3') coordinate system [24]. The stiffness 
C;3 along the tensile axis strongly decreases, from 70 
to 45 GPa. The degradation also affects the shear 
moduli C~4, C;5 and C'66. On the other hand, C'zz is 
essentially constant. These variations confirm that the 
cracks grow preferentially in the plane transverse to 
the loading direction 3'. The elastic symmetry, which 
was initially tetragonal, becomes increasingly ortho- 
rhombic in the (1', 2', 3') coordinate axes. 
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The damage parameters plotted in Fig. 6 are cal- 
culated using Equations 5 and 6 from the C~j stiffness 
changes in the R' (1', 2', 3') coordinate axes. The dam- 
age parameter D;3 associated with the stiffness in the 
tensile axis 3' reaches the value 0.3 when the fracture 
occurs. The parameter D~2 appears to be equal to zero 
considering its relative identification precision. The 
axis 3' tensile stress or; induces shear damage para, 
meters D' ' ' 44, D55 and D66 that exhibit comparable 
values to that of D;3. 

Analysis of the matrix cracking, from the damage 
tensor variation plotted in Fig. 6, is more arduous 
than for the fibre directions tensile test. The micro- 
cracks appear more disordered because of the com- 
plication of the possible directions of cracks' growth. 
They may be determined by the bi-directional texture 
of the composite or determined by the applied stress 
direction. However, the cracks must grow preferen- 
tially in the plane transverse to the 3' loading direction 
since the damage D;3 associated to the stiffness in the 
tensile axis 3' exhibits an important increase while 
D;z is quite equal to zero. Of course, this perpendic- 
ular to 3' loading direction matrix microcracking also 
affects the D~4 and D;5 damage parameters since three 
elasticity coefficients are always altered in the simple 
case of homogeneous distribution of parallel slit 
cracks [15]. 

Nevertheless, it is pointed out that the increases of 
both the damage parameters D;3 and Dig become 
more weak beyond 120 MPa, while the components 
D~ 1, D~5 and D~6 are still increasing. Microcracking 
of the matrix normal to the loading direction 3' seems 
to have reached a saturation level. Another degrada- 
tion mechanism arises with a propagation direction 
which is not in the applied stress direction, or with 
a more disordered geometry. 

4.3. Fully anisotropic degradation of the 
initially tetragonal symmetry 

The change of the stiffnesses Cq in the R(1, 2, 3) coor- 
dinate system of the sample $45, calculated from the 
change of stiffnesses Ci'j in the R' (1', 2', 3') coordinate 
axes with the aid of Equation 9, are shown in Fig. 7. 
The loss of the tetragonal symmetry, since C;3 is no 
longer equal to C;2, induces that the 2D carbon-SiC 
composite which presents a tetragonal symmetry 
with six independent stiffnesses, when submitted to a 
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Figure 5 Variation of the stiffness tensor coefficients and their 90% relative confidence interval in the R'(I', 2', 3') coordinate system, sample 
$45 submitted to a 45 ~ off-axis tensile test. 

complex stress, [0, 0" 2 = o;/2, 0-3 = 0-;/2, 
0-4 = 0-;/2, 0, 0] becomes increasingly monoclinic, 
with 13 independent elasticity coefficients, in the 
(1, 2, 3) coordinate axes. For the particular choice of 
rotation through an angle 45 ~ , there are nine indepen- 
dent stiffnesses: 

Cij  

Cll Clz C~3 = Clz C14 0 0 

C22 C23 C24. 0 0 

C33 = C22 C34 ~- C24 0 0 

C44 0 0 

sym C55 C56 

C66 = C55 

In the R'(I', 2', 3') coordinate system, C'lz remains 
close to C[3. Similarly, the variations of C;5 and 
C;6 are quite identical. Consequently, the values of 
Ct4 and C56 remain weak. On the other hand, 
the initially zero tensile-shear coupling coefficients 
C24 and C34 have now become non-zero. These elas- 
ticity coefficients decrease continuously with the stress 
0-; and reach the value of approximately - 8 GPa 
when the fracture occurs. This points out a notable 
alteration of the elasticity symmetry due to the de- 

terioration of the composite microstructure. The other 
non-diagonal coefficients are not affected by this dam- 
age process. 

The variations of the stiffnesses C u in the R(1, 2, 3) 
coordinate axes calculated from Equation 5 at each 
stress level give the evolution of the damage tensor 
components D u  in this coordinate system using Rela- 
tions 5 and 6, Fig. 8. The damage parameters Dz2 and 
D33 are equal since the coordinate transformation 
gives C2a = C33 for any stress level. It is in line with 
the fact that the directions 2 and 3 are submitted to the 
same tensile stress 0-2 = o3 = 0-;/2. The decrease 
of the shear coefficients are consequent because of the 
superposition of the damage induced by the tensile 
stresses 0-2 and 0-3 and the shear stress 0-4 = 
0-23 = 0-;/2. 

The more noteworthy effect of the off-axis tensile 
solicitation in the direction 3' is that the non-diagonal 
damage parameters 0 2 4  and 0 3 4  exhibit an increase of 
0.2. This increase is due to the loss of the ortho- 
rhombic symmetry in the R(1, 2, 3) coordinate system 
associated with the fibres. The off-axis tensile stress 
initiates microcracks that grow preferentially in the 
plane transverse to the loading direction 3', Fig. 9. The 
predominant orientation of these cracks does not co- 
incide with the fibre axes and induces a loss of sym- 
metry [38]. This fully anisotropic elastic degrada- 
tion is due to the anisotropic damage that affects 
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Figure 9 Microcracking of the matrix normal to the loading direc- 
tion 3' in the sample $45 cutting out according to a 45 ~ angle versus 
fibre directions. 

90 

80 

7O 

0- 60 
L9 
v 

5O 

4O 

3O 

C2'~ 

C;3 

0 50 100 150 200 

Stress (MPa) 

Figure ]0 Induced anisotropy by off-axis tensile stress ~ .  

differently the coefficients C;2 and C;3 that initially 
were quite equal, Fig. 10. 

5. C o n c l u s i o n  
The development and the growth of microcracks high- 
ly affect the macroscopic behaviour of ceramic matrix 
composites. This deterioration is measured, at the 
macroscopic scale, by the changes of the material's 
stiffnesses. Since cracks have overriding propagation 
directions, the effect is highly anisotropic and the 
variations of the whole stiffness tensor must be 
studied. Because classical measurement methods lead 

to a partial identification of these tensor variations, an 
under load ultrasonic device is used making it possible 
to perform the measurements of stiffness tensor 
changes during a tensile test. 

The measurements have been performed on a 
2D woven carbon-SiC composite that presents a 
damaged elastic behaviour. The different variations of 
damage parameters characterize the anisotropy of the 
damaging process and justify the requirement of the 
independent identification of each stiffness coefficient. 
Comparison between measured stiffness change car- 
ried out without a priori crack geometry, and effective 
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elasticity coefficient predictions of a body containing 
cracks give the approximate orientation of crack sys- 
tems. 

When the composite is submitted to a tensile test in 
one of the fibre directions, the cracks grow preferen- 
tially in the plane transverse to the loading direction, 
with respect to the bi-directional texture of the com- 
posite. This degradation process preserves the ortho- 
tropic symmetry in the elastic coefficients since it is 
parallel to one of the three orthogonal axes of material 
symmetry. However, the predominant orientation of 
the microcracks destroys the balance of the carbon 
cloths. The elastic symmetry, which was initially tetra- 
gonal, becomes increasingly orthorhombic. 

A tensile solicitation at 45 ~ from fibre directions 
creates microcracks with a predominant orientation 
that does not coincide with the fibre axes, and induces 
a fully anisotropic elastic degradation. For this kind of 
degradation, the material effectively keeps its ortho- 
rhombic symmetry but the principal axes which 
remain mutually orthogonal, change their direction 
under load. So, in the coordinate axes associated with 
the fibres, the 2D carbon-SiC composite becomes 
monoclinic. The fully anisotropic degradation, that 
induces this loss of symmetry, is described by the non- 
diagonal damage tensor components D24 and D34. 
These damage parameters take into account the coup- 
ling effects between the tensile stresses or2 and cy 3 and 
the shear stress c~4. 

The aim of this study was to prove the capability of 
the ultrasonic method to evaluate preferential orienta- 
tion of matrix cracks comparative to the loading di- 
rection and to the natural axes of the composite. The 
very particular choice of an initially elastic tetragonal 
symmetry composite material, and of an off-axis angle 
of 45 degrees was imposed by the limiting hypothesis 
required by the ultrasonic technique that the material 
keeps its orthorhombic symmetry in an a priori known 
coordinate system. 

The microcracking effect may be totally character- 
ized when the response of a material to any stress has 
been measured. For that purpose, the wide area of 
off-diagonal solicitation must be investigated and the 
elasticity evaluation method must be improved to be 
able to characterize a fully anisotropic material, that 
means, a material that possesses no perpendicular 
planes of symmetry and exhibits a triclinic symmetry 
described with 21 independent stiffnesses. 
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